Has a space-time charge curve

Why is spacetime curved by mass but not by charge?

The charge curves space-time. The metric for a charged black hole is different from an uncharged black hole. Charged (non-rotating) black holes are described by the Reissner-Nordström metric. This has some fascinating properties, including functioning as a portal to other universes, although unfortunately these are unlikely to be physically relevant. This is discussed in the answers to the question. Do objects have energy because of their charge? although it is not a duplicate. Everything that appears in the stress energy tensor curves space-time.

Spin has an effect too, although I have to admit that I'm out of my comfort zone here. In order to account for the spin, we have to extend GR to the Einstein-Cartan theory. However, on a large scale, the net spin is effectively zero, and we wouldn't expect the spin to have a significant effect until we stick to the quantum length scales.

Ratchet freak

... or at speeds that are approaching c.

Indian Gill

If charge curves are spacetime, then why can't we have a geometrical theory of electromagnetism? I know that electrical charges contradict the principle of equivalence theory. But why can't we assume that more charge bends more space-time and therefore accelerates faster compared to an object with less charge?